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ABSTRACT

In recent years, interactive textbooks have gained prominence in an
effort to overcome student reluctance to routinely read textbooks,
complete assigned homeworks, and to better engage students to
keep up with lecture content. Interactive textbooks are more struc-
tured, contain smaller amounts of textual material, and integrate
media and assessment content. While these are an arguable im-
provement over traditional methods of teaching, issues of academic
integrity and engagement remain. In this work we demonstrate
preliminary work on building interactive teaching modules for data
structures and algorithms courses with the following characteris-
tics, (1) the modules are highly visual and interactive, (2) training
and assessment are tightly integrated within the same module, with
sufficient variability in the exercises to make it next to impossible
to violate academic integrity, (3) a data logging and analytic system
that provides instantaneous student feedback and assessment, and
(4) an interactive visual analytic system for the instructor to see
students’ performance at the individual, sub-group or class level,
allowing timely intervention and support for selected students.
Our modules are designed to work within the infrastructure of the
OpenDSA system, which will promote rapid dissemination to an
existing user base of CS educators. We demonstrate a prototype
system using an example dataset.
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1 INTRODUCTION

Instructors in lecture based courses in introductory computer sci-
ence have an expectation that the material presented in class is
reinforced via textbook reading, lab exercises, assigned homeworks
or quizzes. Given the rapid increases in the CS population over
the past few years [39], these courses are large, and monitoring
the performance of all students and reaching out to at-risk stu-
dents is a challenge. This has resulted in new ways of teaching
such courses, broadly classified as active learning techniques, that
can include any combination of lab-based instruction, flipped class-
room settings, gamification, peer-learning, or use of multimedia
content [20, 23, 28, 33], all of which attempt to better engage stu-
dents.

Our focus in this work is towards building new interactive learn-
ing modules and analyzing student performance in data structures
and algorithms courses, which have exhibited significant drop rates
of 40-60% [3, 39]. These modules can be part of interactive text-
books [35, 38, 40] and help reinforce lecture content outside of class.
We also present visual analytic tools that will make it easier for the
instructor to monitor and understand student performance during
the course, thus allowing timely interventions of students who
might be falling behind, or at-risk students. Our learning modules
and visualization tools are extensions to OpenDSA [35] and the
Canvas Learning Management System (LMS) [12] and have the
following characteristics:

Interactive Modules. In contrast to the typical use of quizzes
(short answers, multiple choice questions) in interactive textbooks,
we propose highly interactive modules, in which students directly
interact with the visually represented data structure or algorithms to
complete the module. Students can practice an exercise any number
of times in the learning or training phase (to ensure master of the
material); this is followed by an uninterrupted assessment phase.
Autograding provides immediate feedback on student performance
to both the student and the instructor.

Academic Integrity. The constructed modules are built with
enough variability so that no two students will see the exact same
data structure or algorithm module simultaneously; this reduces
academic integrity violations, and eliminates them in controlled
situations, such as proctored exams, since neighboring students will
receive different but equivalent modules as part of their assessment.
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Student Performance: Instructor and Student Views. To an-

alyze all of the data generated by the learning modules and regular
assignments, we present visual analyses tools that communicate
student performance on a daily or weekly basis to the instructor at
multiple levels: individual student, selected subgroups of students,
or of the entire class. Instructors can focus on specific groups of
students (at-risk students, for instance), and ensure they get the
support and attention via teaching assistants, tutors or direct inter-
action. Analytics is provided to help the instructor make sense of all
the grading data, thanks to a biclustering algorithm that identifies
highly correlated subsets of the grades. A limited version of these
visualizations is also presented to the students.
Contributions. We propose a design that focuses on learning mod-
ules of critical material in data structures and algorithms courses,
using direct interaction and visualization to promote student learn-
ing. The integration of learning and assessment within a visual
and interactive environment is novel. The variability in exercises
across students completing the same modules preserves academic
integrity in most situations, while the autograding promotes scala-
bility to large classes. The use of an open source textbook system
(OpenDSA) with an existing base of users and integration with a
commonly used Learning Management System (Canvas) will help
dissemination and ease of adoption. Visual dashboards of student
performance integrated into the LMS will provide instructor new
tools for timely intervention and student support. We have built a
prototype of the different components of our design!, that includes
five learning modules, and a visual exploratory tool to analyze
student performance, powered by clustering algorithms.

2 RELATED WORK

Our emphasis in this work spans the areas of student engagement,
interactive exercises, and visualization, targeted at student per-
formance for improved learning outcomes. Interactive textbooks
incorporate some of these features in improving the student en-
gagement, by emphasizing a more hands-on approach to learning
and assessment. Two such systems that have gained prominence
in recent years include zyBooks [17, 37, 40] and OpenDSA [19, 35].
zyBooks is a commercial interactive textbook system that provides
interactive tools, animations and responsive questions as part of its
textbooks and has a large user base. Edgcomb et al. [17] discuss their
use of zyBooks across multiple institutions for reading, studying
and homework assignments in introductory programming courses
and describe mechanisms to maintain academic integrity. OpenDSA
is an open source interactive textbook system that uses the JSAV
library [24, 25] for all of its interactions and visualizations. It pro-
vides visualizations of all the basic data structures and interaction
capabilities. Our work is based on using the OpenDSA infrastruc-
ture to augment the interactive and visualization functionality, as
well as provide new visual analytic capabilities for both students
and instructors.

A large body of work has focused on visualization of algorithms
and data structures for improved student engagement [2, 10, 32].
More recently, work by Burlinson et al. [11] combined the use of

1A limited version of the learning modules and visualizations can be found at http:
//sigese-87-2018.herokuapp.com/
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Figure 1: System Design. OpenDSA components are shown in blue
and our contributions are in green.

real-world data and data structure visualizations to improve stu-
dent engagement. Bart et al. [5-7] have focused on curating a large
number of interesting datasets for use in introductory courses in
computer science. The use of visual programming (e.g., Scratch and
Alice) [16, 34] has shown promise for making the first programming
steps easier and more engaging. In addition to providing a graphical
interface for piecing together programs; these systems let students
build graphically interesting programs and encourage them to ex-
plore, experiment, and play. Formal evaluations of Alice [31] have
shown increased performance and retention in the programing
courses and improved attitudes toward computing, especially for
at-risk students.

Researchers have also been looking into adding or exploiting
learning analytics capabilities in an effort to improve student out-
comes. Carter et al. [13] analyzed the different transition sequences
and patterns that students go through when completing program-
ming assignments and related that to student performance. Sim-
ilarly, researchers have also looked at programming behavior by
looking at compilation and hint statistics, in order to understand
their impact on student performance in exams [1, 18]. Identifying
at-risk students effectively, however, still remains a challenge. Khos-
ravi et al. [26] applied clustering techniques to analyze patterns
of summative, formative and behavioral data for a large flipped
class. Bringing sophisticated learning analytics to understanding
and classifying student groups is a goal of our work.

3 METHODS

3.1 System Design

The OpenDSA infrastructure [19, 35] supports robust data collec-
tion from a variety of learning artefacts, including visualizations, in-
teractive exercises, code authoring, and traditional multiple choice
and response strategies, all of which accompany brief textual de-
scriptions and instructions in a book instance on a Learning Man-
agement System (currently Canvas LMS is supported). Data related
to exercise attempts, scores, and proficiencies for student work are
stored as granular interaction logs as students progress through
the visual and interactive components of a course.

Fig. 1 shows a system design overview with existent OpenDSA
components on the left (in blue) and our contributions on the right
(in green). Interactive exercises are created using the JavaScript
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Algorithm Visual Library (JSAV) [24, 25], which provides building
blocks for web-based data structure and algorithm visualizations
and an API for triggering built-in and custom logging events. Once
a textbook and its exercises have been compiled and the correspond-
ing course is generated on an LMS using the OpenDSA framework,
these events can be logged to the OpenDSA MySQL database.

In addition to the new learning modules, we are in the pro-
cess of adding three components to the OpenDSA framework to
facilitate flexible visualization of the collected interaction and ex-
ercise attempt data (See Fig. 1). (1) An ETL (Extract, Transform,
Load) module will read recent student and course data from the
OpenDSA database, compute statistical metrics and aggregations
to reshape the data, and send the resultant data to our secondary
data store. (2) The secondary database will cache the output of the
ETL module. This includes data related to student exercise progress,
topic proficiency, and overviews of the progress of a class within
recent chapters and modules. The database will be implemented
with MySQL. (3) A visualization module will let students examine
their progress and proficiency and allow instructors to view rele-
vant information about the performance of the students in their
course. The visualization module will be implemented alongside
other OpenDSA components, using Ruby on the server side and
web technologies (HTML, CSS, JavaScript) on the client side. The
charts in the respective visualization dashboards will be built using
a mix of Highcharts [22], a JavaScript visualization library, and
D3 [15], a JavaScript library for manipulating and visualizing data.
Each chart supports operations for reordering, filtering, and explor-
ing the student data to provide timely insight into performance,
and will judiciously utilize color schemes (from ColorBrewer [14])
and visual metaphors wherever possible.

3.2 Interactive Module Creation/Assessment

Our approach to building learning modules as part of an interactive
textbook has the following design goals:

o Make the modules highly interactive and engaging, by using
visual representations of the data structures that students
directly interact with to master the underlying algorithms. In
addition, modules should make students reflect on a given
algorithm, as to what it does or what it might construct or
produce as a result.

o Integrate assessment as part of the interactive learning mod-
ules, as opposed to having traditional quiz or short answer
style questions, after the exercise.

e Maintain academic integrity by using a combination of au-
tomatic generation of examples from each module instance
(each user sees a different but equivalent example) and auto-
grading of that instance (OpenDSA provides a large amount
of flexibility for building data structures and algorithms that
can be customized to the goals of the learning module).

e Support for assessment at finer scales by assessing multi-
ple instances of an exercise that a student works through,
to obtain a better estimate of the student’s mastery of the
algorithm or concept.

Figs. 2 and 3 illustrate two example modules that are part of our
system. The first module illustrates an exercise of inserting integer
keys into a binary search tree. The student is presented with a
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Figure 2: Interactive exercise: Inserting elements into a binary
search tree, (a) Initial view showing a stack of values (at the top) to
be inserted into the tree, (b) Inserting 23, after interactive identifica-
tion of the path followed by the insertion algorithm, (c) Insertion of
23 into its correct location, (d) Final tree after insertion of all values.
The user will use mouse clicks to identify the path taken by the in-
sertion algorithm and will repeat this exercise for each of the values
in the stack, followed by pressing the grade button for immediate
assessment.

brief description of the algorithm and the required interaction;
in this instance, user clicks on the involved elements (Fig. 2(b)),
until the final insertion position is found (Fig. 2(c)). Fig. 2(d) shows
the final tree after all elements have been inserted into the tree.
Three key features of the module are (1) the user can practice this
exercise until he/she is comfortable, (2) each instantiation of the
exercise creates a new tree with a different set of keys, and (3) the
user can view a model solution of the module being completed
step-by-step to understand how the module works. After viewing
the module solution, the user must reset the module to be given a
different set of keys. Once the user has mastered the exercise, and
completed their final iteration of practice, the ‘grade’ button can
be pressed to get the final grade. Note that the since each tree and
set of keys are generated randomly, no two students will get the
exact same problem. This makes collusion between students more
time consuming since the solution of one instance will not be the
solution of an other one. We paid attention to generating similar
instances for all student (i.e., trees with good balance) to keep the
difficulty of the different instances of the problem comparable.
Fig. 3 illustrates a second example. We are interested in training
students to study an algorithm and illustrate its functionality or
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| Add Root Node || Add Left Child || Add Right Child

void bstInsert(int value, Tree root) {
if(root == NULL)
root.value = new Node(value);
else{
current = root; parent = NULL;
while(current !'= NULL){
parent = current;
if(value < current.value){
current = current.rightChild;
if(current == NULL)
parent.rightChild = new Node(value);
}
else {
current = current.leftChild;
if(current == NULL)
parent.leftChild = new Node(value);

[63]55|78|75|28|37| 31| 13|68| 51]

[ | l | |23|37|31|13|68|51]
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Figure 3: From an Algorithm to a Data Structure. In this exercise,
the user interactively creates the data structure constructed by the
given algorithm. User can create nodes and place them in left or
right subtree of a node. In this example a set of values are to be
inserted into an initially empty binary search tree. Intentionally,
this algorithm will place smaller key values on the right subtree
and larger values on the left subtree, (a) algorithm and values to
build the tree, (b) after insertion of 4 values, (c) final tree.

what outputs it might generate. In this instance, the algorithm con-
structs a binary search tree by inserting a set of elements, starting
from an empty tree. However, in this instance (Fig. 3(a)), we have
altered the algorithm so that larger values will be inserted on the
left subtree and smaller values into the right subtree (this is still a
binary search tree, albeit an unconventional one). Fig. 3(a) shows
the algorithm and Fig. 3(b), shows the partially constructed tree
as more values get inserted into the tree, and Fig. 3(c) shows the
final tree. For this exercise, the user is provided with interactive
capabilities to create a node, assign a node to its left or right child,
all done with mouse interaction. Once the exercise is completed
(all the nodes in the array (Fig. 3(a)) are processed), it is automati-
cally graded. Similar to the earlier example, we can vary the given
algorithm and create a number of variations on the original inser-
tion algorithm (for instance, insert elements only on the left or the
right side of the tree). The ability to have such variability has 2
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Figure 4: An example data set of student performance in a course.
Top panel illustrates the average student performance (blue curve)
across a set of assignments, quizzes and exams throughout the se-
mester, with the darker regions representing inter-quartile (25-75%)
performance. Bottom panel shows a matrix plot of the same data,
sorted by their overall average grade: students on the Y axis and as-
signments on the X axis. The data has been anonymized and actual
grades randomized to only show the overall distribution.

advantages, (1) preserves academic integrity (as students will see
different algorithms when working on the same module), and (2)
forces students to understand and reflect on the given algorithm.

In the current implementation, we have created modules for the
basic operations on binary search trees (insert, delete, find) as well
as multiple algorithms for constructing and operating on binary
search trees. We have also begun implementing algorithms relating
to linked lists (insertion of elements).

3.3 Visual Analytics

Introductory courses in computer science are generally large, and
typically divided into a number of lab sections. Monitoring student
performance is generally a challenge, and identifying at-risk stu-
dents is an even bigger challenge. Introducing the assessed modules
provide additional information to understand student behavior and
performance in the class. But at the finer grain, each exercise or
activity produces a grade which can create multiple grades per
week. Because the instructor of the class will be flooded with low
level information, we provide visualization capabilities to look at
student performance at multiple scales, from individual student,
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Figure 5: The flood of data contained in a grade book can be made
sense of by using analytics such biclustering algorithms. Here one
bicluster extracted by the CPB algorithm is shown spanning 18 stu-
dents and 4 grades. This bicluster highlights that the grades on three
homeworks and one midterm are correlated.

to subgroups of students, all the way to the entire class. While
visualizations have been used by many researchers to look at post-
mortem data, ranging from simple bar charts [29], and also found in
many LMSes (like Canvas) to more sophisticated charts like parallel
coordinates [18], and cluster visualizations [26].

Fig. 4 illustrates two visualizations of student performance in a
course across a combination of assignments, projects and exams.
The top plot illustrates average student performance with quartile
performance. The lower plot shows the data of each student in a
matrix form: students on the Y axis and the assignments on the X
axis. Our system supports sorting this visualization based on aver-
age student grades, reordering the columns to reflect comparison
across categories (homeworks, projects, exams, etc).

This flood of data can be hard to make sense of. We believe that
automated analyses are necessary to help extend the visualization
in order to reveal patterns that are difficult to see otherwise. As
such, we propose to make use of biclustering techniques, which
became very popular recently in the field of bio-informatics to
analyze the expression level of thousands of genes across hundreds
of patients [27]. In our problem a bicluster is a sub-matrix of the
matrix grade, composed of a subset of the students and a subset
of the grades. Algorithms for biclustering can search for different
type of clusters, for instance OPSM [8] tries to identify high-value,
low-value which could make sense when analyzing student grades.

We selected in this work the CPB algorithm [9] which looks for
biclusters where rows are highly correlated and columns are highly
correlated, according to Pearson Correlation Coefficient (PCC). The

SIGCSE ’18, Feb. 2018, Baltimore, MD, USA

reasoning is that identifying a group of students who performed
similarly across a group of activities can help understand why the
students performed the way they did. For instance, if a biclusters
links some students performance between an early recall-how-to-
program assignment and project with programming components,
one could hypothesize that the students performance in the projects
are linked to their early programming skills. Note that a student
who improved in programming during the semester would likely
not be part of such a cluster. If any part of the class was designed to
improve programming skills, one could hypothesize that the effort
was not successful for the students in that bicluster.

Our visualization supports looking at particular biclusters re-
turned by the algorithm. We computed biclusters using CPB on our
test dataset looking for clusters of PCC greater than 0.95. Fig. 5
shows both the matrix and the grade plots for a particular bicluster.
It shows that for a group of 18 students in that class, their score
in 3 of the homeworks and the first midterm was correlated. Once
again, it does not mean that these 18 students all performed well,
or all performed poorly. It indicates there is a link between their
performance in these 4 grades. In this particular case, the relation
between homework 1 and 3 and the midterm is easily understood
as the midterm covered the topics of homework 1 and 3, all using
mathematical proofs and expressions. The biclusters do not indicate
causality, just correlation. But that is enough in many cases for the
instructor who knows the structure of the class to gain a better
understanding of grades of the class.

Looking at a single bicluster can be helpful. But looking at mul-
tiple biclusters could be insightful as well. Visualizations can be
done by reordering the grade matrix to improve the locality of the
biclusters (which is done by BicAT [4] or BiCluster viewer [21]) or
by representing the biclusters as a graph (which is done by Cluster-
Maker [30] or Furby [36]). One of the advantages of being able to
see multiple biclusters is that one can try to understand a student’s
grade by looking at the biclusters that this student participate in,
or does not participate in.

Hypothetically, one could see that the student’s good midterm
grade is explained by his or her good homework grade which high-
lights that the student understands the theoretical part of the class
well. Also, one could see that the student’s bad grade on the first
project is correlated with bad grades in the early programming labs,
showing that the student’s programming skills were poor. But a
lack of correlation with later projects could hint that the student’s
programming skills improved during the semester, maybe after the
instructor suggested the student meets with the TA to strengthen
his or her programming skills.

We believe that combining analytics and visualization can pro-
vide instructors tools to better understand the student population of
a class and their performance. And while we showed how bicluster-
ing could help, we believe more complex analysis and visualization
could shed a light on effects that are hard to understand from raw
grades.

4 CONCLUSIONS

In this work, we have presented new learning modules that can be
used as part of an interactive textbook in data structures and algo-
rithms courses. Our modules are built to work with the OpenDSA
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system, using JSAV library for generating the module visualizations
that have been customized to provide a highly interactive, visual
and engaging experience for students. Learning and assessment
are part of the same interaction, rather than a post-test, which is
current practice in interactive textbooks. We have used the JSAV
library to generate the modules with sufficient variability in the
module instances, to ensure academic integrity. We also illustrate
examples that demonstrate the ability to incorporate basic data
structure algorithms into these modules and the means to grade
automatically, thus incorporating complex and foundational con-
cepts in an interactive and more engaging environment. We also
illustrated visual analyses of student performance data using bi-
clustering algorithms, so as to make sense of the grades generated
by the learning modules

The current implementation demonstrates a prototype of the
parts of the system described in Fig. 1. Much work remains to be
done in connecting the various components and integrating the
data into the visualization modules, prior to routine use as part
of the LMS. This will be followed by formal user studies in data
structures and algorithms courses. Finally, more work is needed
in developing the visual analytics system to better understand the
needs of the instructors as well as identification of at-risk students
for timely intervention and support.
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